The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "sieve.h"
#include "ptypes.h"
#include "cache.h"


/* 1001 bytes of presieved mod-30 bytes.  If the area to be sieved is
 * appropriately filled with this data, then 7, 11, and 13 do not have
 * to be sieved.  It wraps, so multiple memcpy's can be used.  Do be
 * aware that if you start at 0, you'll have to correct the first byte.
 */
#define PRESIEVE_SIZE (7*11*13)
static const unsigned char presieve13[PRESIEVE_SIZE] =
{ 0x0e,0x20,0x10,0x81,0x49,0x24,0xc2,0x06,0x2a,0x90,0xa1,0x0c,0x14,
  0x58,0x02,0x61,0x11,0xc3,0x28,0x0c,0x44,0x22,0xa4,0x10,0x91,0x18,
  0x4d,0x40,0x82,0x21,0x58,0xa1,0x28,0x04,0x42,0x92,0x20,0x51,0x91,
  0x8a,0x04,0x48,0x03,0x60,0x34,0x81,0x1c,0x06,0xc1,0x02,0xa2,0x10,
  0x89,0x08,0x24,0x45,0x42,0x30,0x10,0xc5,0x0a,0x86,0x40,0x0a,0x30,
  0x38,0x85,0x08,0x15,0x40,0x63,0x20,0x96,0x83,0x88,0x04,0x60,0x16,
  0x28,0x10,0x81,0x49,0x44,0xe2,0x02,0x2c,0x12,0xa1,0x0c,0x04,0x50,
  0x0a,0x61,0x10,0x83,0x48,0x2c,0x40,0x26,0x26,0x90,0x91,0x08,0x55,
  0x48,0x82,0x20,0x19,0xc1,0x28,0x04,0x44,0x12,0xa0,0x51,0x81,0x9a,
  0x0c,0x48,0x02,0x21,0x54,0xa1,0x18,0x04,0x43,0x82,0xa2,0x10,0x99,
  0x08,0x24,0x44,0x03,0x70,0x30,0xc1,0x0c,0x86,0xc0,0x0a,0x20,0x30,
  0x8d,0x08,0x14,0x41,0x43,0x20,0x92,0x85,0x0a,0x84,0x60,0x06,0x30,
  0x18,0x81,0x49,0x05,0xc2,0x22,0x28,0x14,0xa3,0x8c,0x04,0x50,0x12,
  0x69,0x10,0x83,0x09,0x4c,0x60,0x22,0x24,0x12,0x91,0x08,0x45,0x50,
  0x8a,0x20,0x18,0x81,0x68,0x24,0x40,0x16,0x22,0xd1,0x81,0x8a,0x14,
  0x48,0x02,0x20,0x15,0xc1,0x38,0x04,0x45,0x02,0xa2,0x10,0x89,0x18,
  0x2c,0x44,0x02,0x31,0x50,0xe1,0x08,0x86,0x42,0x8a,0x20,0x30,0x95,
  0x08,0x14,0x40,0x43,0x60,0xb2,0x81,0x0c,0x06,0xe0,0x06,0x20,0x10,
  0x89,0x49,0x04,0xc3,0x42,0x28,0x10,0xa5,0x0e,0x84,0x50,0x02,0x71,
  0x18,0x83,0x08,0x0d,0x40,0x22,0x24,0x14,0x93,0x88,0x45,0x40,0x92,
  0x28,0x18,0x81,0x29,0x44,0x60,0x12,0x24,0x53,0x81,0x8a,0x04,0x58,
  0x0a,0x20,0x14,0x81,0x58,0x24,0x41,0x06,0xa2,0x90,0x89,0x08,0x34,
  0x4c,0x02,0x30,0x11,0xc1,0x28,0x86,0x44,0x0a,0xa0,0x30,0x85,0x18,
  0x1c,0x40,0x43,0x21,0xd2,0xa1,0x08,0x04,0x62,0x86,0x20,0x10,0x91,
  0x49,0x04,0xc2,0x03,0x68,0x30,0xa1,0x0c,0x06,0xd0,0x02,0x61,0x10,
  0x8b,0x08,0x0c,0x41,0x62,0x24,0x10,0x95,0x0a,0xc5,0x40,0x82,0x30,
  0x18,0x81,0x28,0x05,0x40,0x32,0x20,0x55,0x83,0x8a,0x04,0x48,0x12,
  0x28,0x14,0x81,0x19,0x44,0x61,0x02,0xa6,0x12,0x89,0x08,0x24,0x54,
  0x0a,0x30,0x10,0xc1,0x48,0xa6,0x40,0x0e,0x22,0xb0,0x85,0x08,0x14,
  0x48,0x43,0x20,0x93,0xc1,0x28,0x04,0x64,0x06,0xa0,0x10,0x81,0x59,
  0x0c,0xc2,0x02,0x29,0x50,0xa1,0x0c,0x04,0x52,0x82,0x61,0x10,0x93,
  0x08,0x0c,0x40,0x23,0x64,0x30,0x91,0x0c,0x47,0xc0,0x82,0x20,0x18,
  0x89,0x28,0x04,0x41,0x52,0x20,0x51,0x85,0x8a,0x84,0x48,0x02,0x30,
  0x1c,0x81,0x18,0x05,0x41,0x22,0xa2,0x14,0x8b,0x88,0x24,0x44,0x12,
  0x38,0x10,0xc1,0x09,0xc6,0x60,0x0a,0x24,0x32,0x85,0x08,0x14,0x50,
  0x4b,0x20,0x92,0x81,0x48,0x24,0x60,0x06,0x22,0x90,0x81,0x49,0x14,
  0xca,0x02,0x28,0x11,0xe1,0x2c,0x04,0x54,0x02,0xe1,0x10,0x83,0x18,
  0x0c,0x40,0x22,0x25,0x50,0xb1,0x08,0x45,0x42,0x82,0x20,0x18,0x91,
  0x28,0x04,0x40,0x13,0x60,0x71,0x81,0x8e,0x06,0xc8,0x02,0x20,0x14,
  0x89,0x18,0x04,0x41,0x42,0xa2,0x10,0x8d,0x0a,0xa4,0x44,0x02,0x30,
  0x18,0xc1,0x08,0x87,0x40,0x2a,0x20,0x34,0x87,0x88,0x14,0x40,0x53,
  0x28,0x92,0x81,0x09,0x44,0x60,0x06,0x24,0x12,0x81,0x49,0x04,0xd2,
  0x0a,0x28,0x10,0xa1,0x4c,0x24,0x50,0x06,0x63,0x90,0x83,0x08,0x1c,
  0x48,0x22,0x24,0x11,0xd1,0x28,0x45,0x44,0x82,0xa0,0x18,0x81,0x38,
  0x0c,0x40,0x12,0x21,0x51,0xa1,0x8a,0x04,0x4a,0x82,0x20,0x14,0x91,
  0x18,0x04,0x41,0x03,0xe2,0x30,0x89,0x0c,0x26,0xc4,0x02,0x30,0x10,
  0xc9,0x08,0x86,0x41,0x4a,0x20,0x30,0x85,0x0a,0x94,0x40,0x43,0x30,
  0x9a,0x81,0x08,0x05,0x60,0x26,0x20,0x14,0x83,0xc9,0x04,0xc2,0x12,
  0x28,0x10,0xa1,0x0d,0x44,0x70,0x02,0x65,0x12,0x83,0x08,0x0c,0x50,
  0x2a,0x24,0x10,0x91,0x48,0x65,0x40,0x86,0x22,0x98,0x81,0x28,0x14,
  0x48,0x12,0x20,0x51,0xc1,0xaa,0x04,0x4c,0x02,0xa0,0x14,0x81,0x18,
  0x0c,0x41,0x02,0xa3,0x50,0xa9,0x08,0x24,0x46,0x82,0x30,0x10,0xd1,
  0x08,0x86,0x40,0x0b,0x60,0x30,0x85,0x0c,0x16,0xc0,0x43,0x20,0x92,
  0x89,0x08,0x04,0x61,0x46,0x20,0x10,0x85,0x4b,0x84,0xc2,0x02,0x38,
  0x18,0xa1,0x0c,0x05,0x50,0x22,0x61,0x14,0x83,0x88,0x0c,0x40,0x32,
  0x2c,0x10,0x91,0x09,0x45,0x60,0x82,0x24,0x1a,0x81,0x28,0x04,0x50,
  0x1a,0x20,0x51,0x81,0xca,0x24,0x48,0x06,0x22,0x94,0x81,0x18,0x14,
  0x49,0x02,0xa2,0x11,0xc9,0x28,0x24,0x44,0x02,0xb0,0x10,0xc1,0x18,
  0x8e,0x40,0x0a,0x21,0x70,0xa5,0x08,0x14,0x42,0xc3,0x20,0x92,0x91,
  0x08,0x04,0x60,0x07,0x60,0x30,0x81,0x4d,0x06,0xc2,0x02,0x28,0x10,
  0xa9,0x0c,0x04,0x51,0x42,0x61,0x10,0x87,0x0a,0x8c,0x40,0x22,0x34,
  0x18,0x91,0x08,0x45,0x40,0xa2,0x20,0x1c,0x83,0xa8,0x04,0x40,0x12,
  0x28,0x51,0x81,0x8b,0x44,0x68,0x02,0x24,0x16,0x81,0x18,0x04,0x51,
  0x0a,0xa2,0x10,0x89,0x48,0x24,0x44,0x06,0x32,0x90,0xc1,0x08,0x96,
  0x48,0x0a,0x20,0x31,0xc5,0x28,0x14,0x44,0x43,0xa0,0x92,0x81,0x18,
  0x0c,0x60,0x06,0x21,0x50,0xa1,0x49,0x04,0xc2,0x82,0x28,0x10,0xb1,
  0x0c,0x04,0x50,0x03,0x61,0x30,0x83,0x0c,0x0e,0xc0,0x22,0x24,0x10,
  0x99,0x08,0x45,0x41,0xc2,0x20,0x18,0x85,0x2a,0x84,0x40,0x12,0x30,
  0x59,0x81,0x8a,0x05,0x48,0x22,0x20,0x14,0x83,0x98,0x04,0x41,0x12,
  0xaa,0x10,0x89,0x09,0x64,0x64,0x02,0x34,0x12,0xc1,0x08,0x86,0x50,
  0x0a,0x20,0x30,0x85,0x48,0x34,0x40,0x47,0x22,0x92,0x81,0x08,0x14,
  0x68,0x06,0x20,0x11,0xc1,0x69,0x04,0xc6,0x02,0xa8,0x10,0xa1,0x1c,
  0x0c,0x50,0x02,0x61,0x50,0xa3,0x08,0x0c,0x42,0xa2,0x24,0x10,0x91,
  0x08,0x45,0x40,0x83,0x60,0x38,0x81,0x2c,0x06,0xc0,0x12,0x20,0x51,
  0x89,0x8a,0x04,0x49,0x42,0x20,0x14,0x85,0x1a,0x84,0x41,0x02,0xb2,
  0x18,0x89,0x08,0x25,0x44,0x22,0x30,0x14,0xc3,0x88,0x86,0x40,0x1a,
  0x28,0x30,0x85,0x09,0x54,0x60,0x43,0x24,0x92,0x81,0x08,0x04,0x70};

static void sieve_prefill(unsigned char* mem, UV startd, UV endd)
{
  UV nbytes = endd - startd + 1;
  MPUassert( (mem != 0) && (endd >= startd), "sieve_prefill bad arguments");

  /* Walk the memory, tiling in the presieve area using memcpy.
   * This is pretty fast, but it might still benefit from using copy
   * doubling (where we copy to the memory, then copy memory to memory
   * doubling in size each time), as memcpy usually loves big chunks.
   */
  while (startd <= endd) {
    UV pstartd = startd % PRESIEVE_SIZE;
    UV sieve_bytes = PRESIEVE_SIZE - pstartd;
    UV bytes = (nbytes > sieve_bytes) ? sieve_bytes : nbytes;
    memcpy(mem, presieve13 + pstartd, bytes);
    if (startd == 0)  mem[0] = 0x01; /* Correct first byte */
    startd += bytes;
    mem += bytes;
    nbytes -= bytes;
  }
}



/* Wheel 30 sieve.  Ideas from Terje Mathisen and Quesada / Van Pelt. */
unsigned char* sieve_erat30(UV end)
{
  unsigned char* mem;
  UV max_buf, limit;
  UV prime;

  max_buf = (end/30) + ((end%30) != 0);
  /* Round up to a word */
  max_buf = ((max_buf + sizeof(UV) - 1) / sizeof(UV)) * sizeof(UV);
  New(0, mem, max_buf, unsigned char );
  if (mem == 0) {
    croak("allocation failure in sieve_erat30: could not alloc %"UVuf" bytes", max_buf);
    return 0;
  }

  /* Fill buffer with marked 7, 11, and 13 */
  sieve_prefill(mem, 0, max_buf-1);

  limit = sqrt((double) end);  /* prime*prime can overflow */
  for (prime = 17; prime <= limit; prime = next_prime_in_sieve(mem,prime)) {
    UV d = (prime*prime)/30;
    UV m = (prime*prime) - d*30;
    UV dinc = (2*prime)/30;
    UV minc = (2*prime) - dinc*30;
    UV wdinc[8];
    unsigned char wmask[8];
    int i;

    /* Find the positions of the next composites we will mark */
    for (i = 1; i <= 8; i++) {
      UV dlast = d;
      do {
        d += dinc;
        m += minc;
        if (m >= 30) { d++; m -= 30; }
      } while ( masktab30[m] == 0 );
      wdinc[i-1] = d - dlast;
      wmask[i%8] = masktab30[m];
    }
    d -= prime;
#if 0
    assert(d == ((prime*prime)/30));
    assert(d < max_buf);
    assert(prime = (wdinc[0]+wdinc[1]+wdinc[2]+wdinc[3]+wdinc[4]+wdinc[5]+wdinc[6]+wdinc[7]));
#endif
    /* Regular code to mark composites.
    * i = 0;
    * do { mem[d] |= wmask[i]; d += wdinc[i]; i = (i+1)&7; } while (d < max_buf);
    * Unrolled version: */
    while (1) {
      mem[d] |= wmask[0];  d += wdinc[0];  if (d >= max_buf) break;
      mem[d] |= wmask[1];  d += wdinc[1];  if (d >= max_buf) break;
      mem[d] |= wmask[2];  d += wdinc[2];  if (d >= max_buf) break;
      mem[d] |= wmask[3];  d += wdinc[3];  if (d >= max_buf) break;
      mem[d] |= wmask[4];  d += wdinc[4];  if (d >= max_buf) break;
      mem[d] |= wmask[5];  d += wdinc[5];  if (d >= max_buf) break;
      mem[d] |= wmask[6];  d += wdinc[6];  if (d >= max_buf) break;
      mem[d] |= wmask[7];  d += wdinc[7];  if (d >= max_buf) break;
    }
  }

  return mem;
}



int sieve_segment(unsigned char* mem, UV startd, UV endd)
{
  const unsigned char* sieve;
  UV limit;
  UV pcsize;
  UV startp = 30*startd;
  UV endp = (endd >= (UV_MAX/30))  ?  UV_MAX-2  :  30*endd+29;

  MPUassert( (mem != 0) && (endd >= startd) && (endp >= startp),
             "sieve_segment bad arguments");

  /* Fill buffer with marked 7, 11, and 13 */
  sieve_prefill(mem, startd, endd);

  limit = sqrt( (double) endp ) + 1;
  /* printf("segment sieve from %"UVuf" to %"UVuf" (aux sieve to %"UVuf")\n", startp, endp, limit); */
  pcsize = get_prime_cache(limit, &sieve);
  if (pcsize < limit) {
    release_prime_cache(sieve);
    return 0;
  }

  START_DO_FOR_EACH_SIEVE_PRIME(sieve, 17, pcsize)
  {
    /* p increments from 17 to at least sqrt(endp) */
    UV p2 = p*p;   /* TODO: overflow */
    if (p2 > endp)  break;
    /* Find first multiple of p greater than p*p and larger than startp */
    if (p2 < startp) {
      p2 = (startp / p) * p;
      if (p2 < startp)  p2 += p;
    }
    /* Bump to next multiple that isn't divisible by 2, 3, or 5 */
    while (masktab30[p2%30] == 0) { p2 += p; }
    /* It is possible we've overflowed p2, so check for that */
    if ( (p2 <= endp) && (p2 >= startp) ) {
      /* Sieve from startd to endd starting at p2, stepping p */
#if 0
      /* Basic sieve */
      do {
        mem[(p2 - startp)/30] |= masktab30[p2%30];
        do { p2 += 2*p; } while (masktab30[p2%30] == 0);
      } while ( (p2 <= endp) && (p2 >= startp) );
#else
      UV d = (p2)/30;
      UV m = (p2) - d*30;
      UV dinc = (2*p)/30;
      UV minc = (2*p) - dinc*30;
      UV wdinc[8];
      unsigned char wmask[8];
      UV offset_endd = endd - startd;
      int i;

      /* Find the positions of the next composites we will mark */
      for (i = 1; i <= 8; i++) {
        UV dlast = d;
        do {
          d += dinc;
          m += minc;
          if (m >= 30) { d++; m -= 30; }
        } while ( masktab30[m] == 0 );
        wdinc[i-1] = d - dlast;
        wmask[i%8] = masktab30[m];
      }
      d -= p;
      d -= startd;
#if 0
      i = 0;        /* Mark the composites */
      do {
        mem[d] |= wmask[i];
        d += wdinc[i];
        i = (i+1) & 7;
      } while (d <= offset_endd);
#else
      /* Unrolled inner loop for marking composites */
      while ( (d+p) <= offset_endd ) {
        mem[d] |= wmask[0];  d += wdinc[0];
        mem[d] |= wmask[1];  d += wdinc[1];
        mem[d] |= wmask[2];  d += wdinc[2];
        mem[d] |= wmask[3];  d += wdinc[3];
        mem[d] |= wmask[4];  d += wdinc[4];
        mem[d] |= wmask[5];  d += wdinc[5];
        mem[d] |= wmask[6];  d += wdinc[6];
        mem[d] |= wmask[7];  d += wdinc[7];
      }
      while (1) {
        mem[d] |= wmask[0];  d += wdinc[0];  if (d > offset_endd) break;
        mem[d] |= wmask[1];  d += wdinc[1];  if (d > offset_endd) break;
        mem[d] |= wmask[2];  d += wdinc[2];  if (d > offset_endd) break;
        mem[d] |= wmask[3];  d += wdinc[3];  if (d > offset_endd) break;
        mem[d] |= wmask[4];  d += wdinc[4];  if (d > offset_endd) break;
        mem[d] |= wmask[5];  d += wdinc[5];  if (d > offset_endd) break;
        mem[d] |= wmask[6];  d += wdinc[6];  if (d > offset_endd) break;
        mem[d] |= wmask[7];  d += wdinc[7];  if (d > offset_endd) break;
      }
#endif
#endif
    }
  }
  END_DO_FOR_EACH_SIEVE_PRIME;

  release_prime_cache(sieve);
  return 1;
}