#!perl
use strict;
use warnings;
use Test::More tests => 4;
BEGIN {
use_ok('Math::Symbolic');
}
if ($ENV{TEST_YAPP_PARSER}) {
require Math::Symbolic::Parser::Yapp;
$Math::Symbolic::Parser = Math::Symbolic::Parser::Yapp->new();
}
use Math::Symbolic::ExportConstants qw/:all/;
my $var = Math::Symbolic::Variable->new();
my $a = $var->new( 'a' => 2 );
print "Vars: a=" . $a->value() . " (Value is optional)\n\n";
my $const = Math::Symbolic::Constant->zero();
my $ten = $const->new(10);
my $op = Math::Symbolic::Operator->new();
my $mul1 = $op->new( '*', $a, $a );
my $exp = $op->new( '^', $ten, $mul1 );
ok( ref($exp) eq 'Math::Symbolic::Operator' && $exp->type() == B_EXP,
'Creation of exponentiation' );
print "Expression: 10^(a*a)\n\n";
print "prefix notation and evaluation:\n";
print $exp->to_string('prefix') . " = " . $exp->value() . "\n\n";
print "Now, we derive this partially to a: (prefix again)\n";
my $n_tree = $op->new(
{
type => U_P_DERIVATIVE,
operands => [ $exp, $a ],
}
);
print $n_tree->to_string('prefix') . " = " . $n_tree->value() . "\n\n";
print "Now, we apply the derivative to the term: (infix)\n";
$@ = undef;
my $derived;
eval <<'HERE';
$derived = $n_tree->apply_derivatives();
HERE
ok( !$@, 'apply_derivatives() did not complain' );
print "$derived\n";
print "$derived = " . $derived->value() . "\n\n";
print "Finally, we simplify the derived term as much as possible:\n";
$@ = undef;
my $simplified;
eval <<'HERE';
$simplified = $derived->simplify();
HERE
ok( !$@, 'simplify() did not complain' );
print "$simplified = " . $derived->value() . "\n\n";