#include "erfa.h"
void eraApco(double date1, double date2,
double ebpv[2][3], double ehp[3],
double x, double y, double s, double theta,
double elong, double phi, double hm,
double xp, double yp, double sp,
double refa, double refb,
eraASTROM *astrom)
/*
** - - - - - - - -
** e r a A p c o
** - - - - - - - -
**
** For a terrestrial observer, prepare star-independent astrometry
** parameters for transformations between ICRS and observed
** coordinates. The caller supplies the Earth ephemeris, the Earth
** rotation information and the refraction constants as well as the
** site coordinates.
**
** Given:
** date1 double TDB as a 2-part...
** date2 double ...Julian Date (Note 1)
** ebpv double[2][3] Earth barycentric PV (au, au/day, Note 2)
** ehp double[3] Earth heliocentric P (au, Note 2)
** x,y double CIP X,Y (components of unit vector)
** s double the CIO locator s (radians)
** theta double Earth rotation angle (radians)
** elong double longitude (radians, east +ve, Note 3)
** phi double latitude (geodetic, radians, Note 3)
** hm double height above ellipsoid (m, geodetic, Note 3)
** xp,yp double polar motion coordinates (radians, Note 4)
** sp double the TIO locator s' (radians, Note 4)
** refa double refraction constant A (radians, Note 5)
** refb double refraction constant B (radians, Note 5)
**
** Returned:
** astrom eraASTROM* star-independent astrometry parameters:
** pmt double PM time interval (SSB, Julian years)
** eb double[3] SSB to observer (vector, au)
** eh double[3] Sun to observer (unit vector)
** em double distance from Sun to observer (au)
** v double[3] barycentric observer velocity (vector, c)
** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
** bpn double[3][3] bias-precession-nutation matrix
** along double longitude + s' (radians)
** xpl double polar motion xp wrt local meridian (radians)
** ypl double polar motion yp wrt local meridian (radians)
** sphi double sine of geodetic latitude
** cphi double cosine of geodetic latitude
** diurab double magnitude of diurnal aberration vector
** eral double "local" Earth rotation angle (radians)
** refa double refraction constant A (radians)
** refb double refraction constant B (radians)
**
** Notes:
**
** 1) The TDB date date1+date2 is a Julian Date, apportioned in any
** convenient way between the two arguments. For example,
** JD(TDB)=2450123.7 could be expressed in any of these ways, among
** others:
**
** date1 date2
**
** 2450123.7 0.0 (JD method)
** 2451545.0 -1421.3 (J2000 method)
** 2400000.5 50123.2 (MJD method)
** 2450123.5 0.2 (date & time method)
**
** The JD method is the most natural and convenient to use in cases
** where the loss of several decimal digits of resolution is
** acceptable. The J2000 method is best matched to the way the
** argument is handled internally and will deliver the optimum
** resolution. The MJD method and the date & time methods are both
** good compromises between resolution and convenience. For most
** applications of this function the choice will not be at all
** critical.
**
** TT can be used instead of TDB without any significant impact on
** accuracy.
**
** 2) The vectors eb, eh, and all the astrom vectors, are with respect
** to BCRS axes.
**
** 3) The geographical coordinates are with respect to the ERFA_WGS84
** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN
** CONVENTION: the longitude required by the present function is
** right-handed, i.e. east-positive, in accordance with geographical
** convention.
**
** 4) xp and yp are the coordinates (in radians) of the Celestial
** Intermediate Pole with respect to the International Terrestrial
** Reference System (see IERS Conventions), measured along the
** meridians 0 and 90 deg west respectively. sp is the TIO locator
** s', in radians, which positions the Terrestrial Intermediate
** Origin on the equator. For many applications, xp, yp and
** (especially) sp can be set to zero.
**
** Internally, the polar motion is stored in a form rotated onto the
** local meridian.
**
** 5) The refraction constants refa and refb are for use in a
** dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed
** (i.e. refracted) zenith distance and dZ is the amount of
** refraction.
**
** 6) It is advisable to take great care with units, as even unlikely
** values of the input parameters are accepted and processed in
** accordance with the models used.
**
** 7) In cases where the caller does not wish to provide the Earth
** Ephemeris, the Earth rotation information and refraction
** constants, the function eraApco13 can be used instead of the
** present function. This starts from UTC and weather readings etc.
** and computes suitable values using other ERFA functions.
**
** 8) This is one of several functions that inserts into the astrom
** structure star-independent parameters needed for the chain of
** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
**
** The various functions support different classes of observer and
** portions of the transformation chain:
**
** functions observer transformation
**
** eraApcg eraApcg13 geocentric ICRS <-> GCRS
** eraApci eraApci13 terrestrial ICRS <-> CIRS
** eraApco eraApco13 terrestrial ICRS <-> observed
** eraApcs eraApcs13 space ICRS <-> GCRS
** eraAper eraAper13 terrestrial update Earth rotation
** eraApio eraApio13 terrestrial CIRS <-> observed
**
** Those with names ending in "13" use contemporary ERFA models to
** compute the various ephemerides. The others accept ephemerides
** supplied by the caller.
**
** The transformation from ICRS to GCRS covers space motion,
** parallax, light deflection, and aberration. From GCRS to CIRS
** comprises frame bias and precession-nutation. From CIRS to
** observed takes account of Earth rotation, polar motion, diurnal
** aberration and parallax (unless subsumed into the ICRS <-> GCRS
** transformation), and atmospheric refraction.
**
** 9) The context structure astrom produced by this function is used by
** eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.
**
** Called:
** eraAper astrometry parameters: update ERA
** eraC2ixys celestial-to-intermediate matrix, given X,Y and s
** eraPvtob position/velocity of terrestrial station
** eraTrxpv product of transpose of r-matrix and pv-vector
** eraApcs astrometry parameters, ICRS-GCRS, space observer
** eraCr copy r-matrix
**
** Copyright (C) 2013-2014, NumFOCUS Foundation.
** Derived, with permission, from the SOFA library. See notes at end of file.
*/
{
double sl, cl, r[3][3], pvc[2][3], pv[2][3];
/* Longitude with adjustment for TIO locator s'. */
astrom->along = elong + sp;
/* Polar motion, rotated onto the local meridian. */
sl = sin(astrom->along);
cl = cos(astrom->along);
astrom->xpl = xp*cl - yp*sl;
astrom->ypl = xp*sl + yp*cl;
/* Functions of latitude. */
astrom->sphi = sin(phi);
astrom->cphi = cos(phi);
/* Refraction constants. */
astrom->refa = refa;
astrom->refb = refb;
/* Local Earth rotation angle. */
eraAper(theta, astrom);
/* Disable the (redundant) diurnal aberration step. */
astrom->diurab = 0.0;
/* CIO based BPN matrix. */
eraC2ixys(x, y, s, r);
/* Observer's geocentric position and velocity (m, m/s, CIRS). */
eraPvtob(elong, phi, hm, xp, yp, sp, theta, pvc);
/* Rotate into GCRS. */
eraTrxpv(r, pvc, pv);
/* ICRS <-> GCRS parameters. */
eraApcs(date1, date2, pv, ebpv, ehp, astrom);
/* Store the CIO based BPN matrix. */
eraCr(r, astrom->bpn );
/* Finished. */
}
/*----------------------------------------------------------------------
**
**
** Copyright (C) 2013-2014, NumFOCUS Foundation.
** All rights reserved.
**
** This library is derived, with permission, from the International
** Astronomical Union's "Standards of Fundamental Astronomy" library,
** available from http://www.iausofa.org.
**
** The ERFA version is intended to retain identical functionality to
** the SOFA library, but made distinct through different function and
** file names, as set out in the SOFA license conditions. The SOFA
** original has a role as a reference standard for the IAU and IERS,
** and consequently redistribution is permitted only in its unaltered
** state. The ERFA version is not subject to this restriction and
** therefore can be included in distributions which do not support the
** concept of "read only" software.
**
** Although the intent is to replicate the SOFA API (other than
** replacement of prefix names) and results (with the exception of
** bugs; any that are discovered will be fixed), SOFA is not
** responsible for any errors found in this version of the library.
**
** If you wish to acknowledge the SOFA heritage, please acknowledge
** that you are using a library derived from SOFA, rather than SOFA
** itself.
**
**
** TERMS AND CONDITIONS
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1 Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
**
** 2 Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in
** the documentation and/or other materials provided with the
** distribution.
**
** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
** the International Astronomical Union nor the names of its
** contributors may be used to endorse or promote products derived
** from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
** POSSIBILITY OF SUCH DAMAGE.
**
*/